Building R Packages

Emil Hvitfeldt

2019-3-28

Slides and material

Slides are up now
https://github.com/USCbiostats/software-dev

Chapter will be up by end of week
https://github.com/USCbiostats/handbook

https://github.com/USCbiostats/software-dev
https://github.com/USCbiostats/handbook

Overview

- Motivation
- Minimal R Package
- Not so minimal R package

- Live demo

Motilvation

™) David Robinson

0 @drob

"l wish I'd left this code across scattered .R
files instead of combining it into a package'
said no one ever #rstats r-pkgs.had.co.nz

& Oversast tweet

06.17 - 19. jun. 2015

24Retweets 39Likes P2 PO T DO

O s 1 24 Q) 39 &

What is a R package?

- Packages are collections of R functions, data, and compiled
code in a well-defined format.

R comes pre-installed with some packages (base packages)

rownames(installed.packages(priority = "base"))

[1] "base" "compiler" "datasets" ‘"graphics" "grDevices"
[6] "grid" "methods” "parallel"” "splines" "stats"

[11] "stats4" "tcltk" "tools" "utils"

And some are loaded automatically

getOption("defaultPackages™)

[1] "datasets" "utils" "grDevices" "graphics" "stats" "methods"

Why create a R package?
Saving yourself time

Sharing

Organization

Collaboration

Credit

Deployment
Personal

It never have to leave your computer

Open-source it

Put it on Github/Gitlab

CRAN / Bioconductor

Package Manuals

Light

https://hilaryparker.com/2014/04/29/writing-an-r-package-from-
scratch/

Medium

https://r-pkgs.org/

Heavy

https://cran.r-project.org/doc/manuals/R-exts.html

https://hilaryparker.com/2014/04/29/writing-an-r-package-from-scratch/
https://r-pkgs.org/
https://cran.r-project.org/doc/manuals/R-exts.html

Posted on April 29, 2014 «— Previous Next —

Writing an R package from scratch

As | have worked on various projects at Etsy, | have accumulated a suite of functions that help me
quickly produce tables and charts that | find useful. Because of the nature of iterative development, it
often happens that | reuse the functions many times, mostly through the shameful methed of copying
the functions into the project directory. | have been a fan of the idea of personal R packages for a
while, but it always seemed like A Project That | Should Do Someday and someday never came.
until...

Etsy has an amazing week called *hack week” where we all get the opportunity to work on fun
projects instead of our regular jobs. | sat down yesterday as part of Etsy's hack week and decided ‘I
am finally going to make that package | keep saying | am going to make.” It took me such little time
that | was hit with that familiar feeling of the joy of optimization combined with the regret of past
inefficiencies (joygret?). | wish | could go back in time and create the package the first moment |
thought about it, and then use all the saved time to watch cat videos because that really would have
been more productive.

This tutorial is not about making a beautiful, perfect R package. This tutorial is about creating a bare-
minimum R package so that you don't have to keep thinking to yourself, “| really should just make an
R package with these functions so | don't have to keep copy/pasting them like a goddamn luddite.”
Seriously, it doesn't have to be about sharing your code (although that is an added benefit]). It is
about saving yourself time. (n.b. this is my attitude about all reproducibility.)

(For more detalils, | recommend this chapter in Hadley Wickham's Aavanced R Programming book.)

Step 0: Packages you will need
The packages you will need to create a package are devtools and roxygen2. | am having you
download the development version of the roxygen2 package.

install.packages ("devtools")
library("devtools™)
devtools::install github("klutometis/roxygen")

9/ 42

R Packages

Hadley Wickham

Jenny Bryan

R packages

Packages are the fundamental units of reproducible R code. They

include reusable R functions, the documentation that describes how to
use them, and sample data. In this book you’ll learn how to turn your
code into packages that others can easily download and use. Writing a
package can seem overwhelming at first. So start with the basics and
improve it over time. It doesn’t matter if your first version isn’t perfect

as long as the next version is better.

o i I
This edition is a work in progress. If you’re looking for the electronic R PaCkageS

version of the 1st edition, you can find it online at http://r- SRR TEST D OCURENTAND SURE YO oE
pkgs.had.co.nz/.

Hadley Wickham

10 | 42

1.2.4 Using C++11 code

R can be built without a C++ compiler although one is available (but not necessarily installed) on all known R platforms. For full portability across platforms, all that can be assumed is approximate support for the C++98 standard (the
widely used g++ deviates considerably from the standard). Some compilers have a concept of ‘C++03’ (‘essentially a bug fix’) or ‘C++ Technical Report 1’ (TR1), an optional addition to the ‘C++03’ revision which was published in
2007. A revised standard was published in 2011 and compilers with pretty much complete implementations are available. C++11 added all of the C99 features which are not otherwise implemented in C++, and C++ compilers commonly
accept C99 extensions to C++98. A minor updateg to C++11 (C++14) was published in December 2014. The latest standard (C++17) was published in December 2017, and a further revision (‘C++20’) is in preparation.

‘What standard a C++ compiler aims to support can be hard to determine: the value32 of _ cplusplus may help but some compilers use it to denote a standard which is partially supported and some the latest standard which is (almost)
fully supported. As from version 6, g++ defaults to C++14 (with GNU extensions): earlier versions aim to support C++03 with many extensions (including support for TR1) with version 5 having fairly complete C++14 support enabled

by flag -std=gnu++14. clang with its native? 1ibe++ headers and library has since version 3.4 included almost all C++14 features, but does not support TR1. As from version 6.0.0, clang defaults to C++14.

Since version 3.1.0, R has provided support for C++11 in packages in addition to C++98. This support is not uniform across platforms as it depends on the capabilities of the compiler (see below). When R is configured, it will determine
whether the C++ compiler supports C++11 and which compiler flags, if any, are required to enable C++11 support. For example, recent versions of g++ or clang++ accept the compiler flag -std=c++11, and earlier versions support a flag
-std=c++0x, but the latter only provided partial support for the C++11 standard (it later became a deprecated synonym for -std=c++11).

In order to use C++11 code in a package, the package’s Makevars file (or Makevars.win on Windows) should include the line
CXX_STD = CXX11
Compilation and linking will then be done with the C++11 compiler.
Packages without a src/Makevars or src/Makefile file may specify that they require C++11 for code in the src directory by including ‘c++11’ in the ‘SystemRequirements’ field of the DEscrIPTION file, €.g.
SystemRequirements: C++11
If a package does have a src/Makevars| .win] file then setting the make variable ‘cxx_stp’ is preferred, as it allows R cMp SHLIB to work correctly in the package’s src directory.
Conversely, to ensure that the C++98 standard is assumed even when this is not the compiler default, use
SystemRequirements: C++98
or
CXX_STD = CXX98

The C++11 compiler will be used systematically by R for all C++ code if the environment variable use_cxx11 is defined (with any value). Hence this environment variable should be defined when invoking R cMp SHLIB in the absence
of a Makevars file (or Makevars.win on Windows) if a C++11 compiler is required.

Further control over compilation of C++11 code can be obtained by specifying the macros ‘cxx11’ and ‘cxx11sTp’ when R is conﬁguredﬂ, or in a personal or site Makevars file. See Customizing package compilation in R Installation
and Administration. If C++11 support is not available then these macros are both empty; if it is available by default, ‘cxx11’ defaults to ‘cxx’ and ‘cxx11sTD’ is empty . Otherwise, ‘cxx11’ defaults to the same value as the C++ compiler
‘cxx’ and the flag ‘cxx11sTD’ defaults to -std=c++11 or similar. It is possible to specify ‘cxx11’ to be a distinct compiler just for C++11-using packages, e.g. g++ on Solaris. Note however that different C++ compilers (and even
different versions of the same compiler) often differ in their ABI so their outputs can rarely be mixed. By setting ‘cxx11sTD’ it is also possible to choose a different dialect of the standard such as -std=c++11.

As noted above, support for C++11 varies across platforms: on some platforms, it may be possible or necessary to select a different compiler for C++11, via personal or site Makevars files.

There is no guarantee that C++11 can be used in a package in combination with any other compiled language (even C), as the C++11 compiler may be incompatible with the native compilers for the platform. (There are known problems
mixing C++11 with Fortran.)

Getting started

You will need the following packages

install.packages(c("devtools", "roxygen2", "testthat", "knitr™))

Developmental version of devtools and usethis.

devtools: :install_github("r-1ib/devtools")
devtools::install_github("r-1ib/usethis™)

On Windows, download and install Rtools
On Mac, download and install XCode
On Linux, download and install the R development tools

Creating a minimal R package -
Name

Must be Googleable and avaliable.
https://github.com/ropenscilabs/available

Can be

- Informative name, (goodpractice, microbenchmark)
- A play on words, (dplyr, strapgod, wibble)

- An Abriviation, (ergm, mcmc)

- Add an extra R, (lintr, purrr)

- No connection (shiny)

https://github.com/ropenscilabs/available

Create a minimal R package

> library(usethis)

> create_package("~/path/to/my/package™)

Setting active project to '/Users/emilhvitfeldthansen/path/to/my/package’
Creating 'R/’

Creating 'man/'

Writing 'DESCRIPTION'

Writing 'NAMESPACE'

Writing 'package.Rproj'

Adding '.Rproj.user' to '.gitignore'

Adding 'Apackage\\.Rproj$', 'A\\.Rproj\\.user$' to '.Rbuildignore'
Opening new project 'package' in RStudio

Setting active project to '/Users/emilhvitfeldthansen/Desktop/mini’

AR AR N YNNSESN S

DECCDFDO®P

.gitignore
.Rbuildignore
.Rproj.user
DESCRIPTION
man
NAMESPACE
package.Rproj
R

We are done!

DESCRIPTION file

Package: package
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000

Authors@R:
person(given = "Emil",
family = "Hvitfeldt",
role = c("aut", "cre"),

email = "emilhhvitfeldt@gmail.com")

Description: What the package does (one paragraph).
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
Imports:

dplyr
Suggests:

ggplot2

R/ - adding functions

Create fibonacci.R file with use_r("fibonacci™)

fibonacci <- function(n) {
1f(h == 0) return(®)
1f(h == 1) return(l)

fibonacci(n - 1) + fibonacci(n - 2)

}

R/ - adding documentations

#' Calculates the fibonacci numbers
#
#' This function takes in a number and returns the corresponding
#' fibonacci number.
4
#' @aram n A number
#
#' @return A number
#' @export
4
#' @examples
#' fibonacci(10)
fibonacci <- function(n) {
1f(h == 0) return(®)
1f(n == 1) return(l)

fibonacci(n - 1) + fibonacci(n - 2)

}

18 [42

devtools: :document()

==> devtools::document(roclets = c('rd', 'collate', "namespace'))

Updating package documentation

Updating roxygen version in /Users/emilhvitfeldthansen/path/to/my/package/DESCRIPTION
Writing NAMESPACE

Loading package

Writing fibonacci.Rd

Writing NAMESPACE

Documentation completed

Automatically populate the man/ folder

R/ - adding documentations

fibonacci {package} R Documentation

Calculates the fibonacci numbers

Description

This function takes in a number and returns the corresponding fibonacci humber.
Usage

fibonacci(n)

Arguments

n A number

Value
A number

Examples

fibonacci(1@)

Namespace

A\ This document is read only.
Generated by roxygenZ2: do not edit by hand

export(fibonacci)

P WN R

Dependencies

Package: package
Title: What the Package Does (One Line, Title Case)
Version: 0.0.0.9000

Authors@R:
person(given = "Emil",
family = "Hvitfeldt",
role = c("aut", "cre"),

email = "emilhhvitfeldt@gmail.com")

Description: What the package does (one paragraph).
License: MIT + file LICENSE
Encoding: UTF-8
LazyData: true
Imports:

dplyr
Suggests:

ggplot2

Dependencies

- Imports are packages that your package to work.

- Suggests are packages that your package can use but doesn't
need.

- LinkingTo packages listed here rely on C or C++ code in
another package.

How to distribute

- Self-use

devtools: :install()
devtools: :build()

- Github + git
usethis: :use_github()

- CRAN

devtools: :release()

Additional components

- Package name - Tests

- README - Vignettes

- Documentation - Continuous integration
- Documentation website - News

- Authorship - codecov

- License - Dependencies

- Data - Examples

Checking

R CMD check
Run a bunch of sanity checks.
run

devtools: :check()

or Ctrl/Cmd + Shift + E in RStudio

Readme

README.md

.
yardstick

Overview

yardstick is a package to estimate how well models are working using tidy data principles. See the package webpage
for more information.

Installation

To install the package:

install.packages("yardstick")

Development version:
devtools::install_github("tidymodels/yardstick")

Two class metric

For example, suppose you create a classification model and predict on a new data set. You might have data that looks like
this:

library(yardstick)
library(dplyr)

head(two_class_example)

#> truth Classl Class2 predicted
#> 1 Class2 0.00359 0.996411 Class2
#> 2 Classl 0.67862 0.321379 Classl

#< D Flacre" A 11000 N 00NINE Flacen

27 | 42

Readme

Will generally be first point of contact for developers.

Contains:

- The package name

- Badges for continuous integration and test coverage
- Short description of goals of package

- Installation instructions

- Brief demonstration usage

- Citation information

Readme - creation

Simply type

use_readme_rmd()

Workflow

- Modify
- Knit (crtl/cmd + k)

- repeat

Licenses

Officially Authorized

e The “GNU Affero General Public License” version 3

e The “Artistic License” version 2.0

e The “BSD 2-clause License”

e The “BSD 3-clause License”

e The “GNU General Public License” version 2

¢ The “GNU General Public License” version 3

e The “GNU Library General Public License” version 2
e The “GNU Lesser General Public License” version 2.1
e The “GNU Lesser General Public License” version 3
e The “MIT License”

e The “Creative Commons Attribution-ShareAlike International License” version 4.0

Licenses

(I'm not a lawyer!)

- MIT (simple and permissive)

- GPL-2 or GPL-3 (anti-capitalism)

- CCO (freely be used for any purpose)
use_mit_license("My Name™)

use_gpl3_license("My Name")
use_cc@_license("Ny Name™)

Vignettes

Long form documentation.

Perfect for longer examples that doesn't fit in examples.

use_vignette("Awesome vignette")

News

More granular details regarding the changes to the package

use_news_md()

parship 0.0.2

Small release driven by changes in sample() in the current r-devel.

New Features

e A "null model" is now available that fits a predictor-free model (using the mean of the outcome for regression or the
mode for classification).

e fit_xy() can take a single column data frame or matrix for y without error

Other Changes

e varying_args() nowhasa full argument to control whether the full set of possible varying arguments is returned
(as opposed to only the arguments that are actually varying).

e fit_control() notreturns an S3 method.
¢ For classification models, an error occurs if the outcome data are not encoded as factors (#115).

e The prediction modules (e.g. predict_class, predict_numeric , etc) were de-exported. These were internal
functions that were not to be used by the users and the users were using them.

e An event time data set (check_times) was included that is the time (in seconds) to run R CMD check using the "r-

devel-windows-ix86+x86_64" flavor. Packages that errored are censored.

Bug Fixes

* varying_args() now uses the version from the generics package. This means that the first argument, x , has
been renamed to object to align with generics.

e For the recipes step method of varying_args() , there is now error checking to catch if a user tries to specify an
argument that cannot be varying as varying (for example, the id) (#132).

Data

We want to include the data generation process.

use_data_raw()

Next:

e Add data creation scripts in 'data-raw/’
o Use "usethis::use_data() to add data to package

INn data-raw

fib5 <- c(1, 1, 2, 3, 5, 8)
use_data(fib5)

Data - documentation

Create data R file

use_r("data™)

Document as normal. Do not @export.

#' First 5 fibonacci numbers

#’

#' A vector with the first 5 fibonacci numbers.
#I

#

" @format A vector of length 5
"fib5"

Compiled Code (c++)

Start by setting up package to work with compiled code
use_rcpp()

Create file: File -> New File -> C++ file

- Write code
- Document with Ctrl/Cmd + Shift + D
- Build & Reload Ctrl/Cmd + Shift + B

- repeat

Testing

Use a testing framework, we will use the testthat package

use_testthat()

add a test

use_test("fibonacci™)

Testing

context("test-fibonacci")

test_that("fibonacci work as intended", {
expect_equal(fibonacci(6), 8)
1)

test_that("fibonacci complains when n is not numeric scalar", {
expect_error(fibonacci("six"))
expect_warning(fibonacci(c(l, 2, 3, 4)))

3)

Using Continuous Integration
(Cl)

The idea behind continuous integration is that Cl will
automatically run R CMD check (along with your tests, etc.)
every time you push a commit to GitHub.

use_travis()

Code coverage

use_coverage()

Badges

ggstatsplot: ggplot2 Based Plots with Statistical Details

Package Status Usage GitHub References

build | passing downloads ~ 66/day GitHub [0.0.10.9000

website ggstatsplot

I:-u . .
CRAN 'Not OK) build | passing -Github Pendmg rdocumentation | 0.0.9

PRs

lifecycle maturing QGithub Issues vignettes 0.0.10
coverage |100%) Github 418 DOI 10.5281/zenodo.2074621
codecov |99% last change | 2019-03-24
covrpage | Last Build 2019 01 31 repo status |Active

W dependencies ok forks 49

last commit | last monday:

contributions [welcome

dependencies 29/188

41 | 42

Live demo

