The reduced data is stored as reduced_data in the partition object and can thus be returned by subsetting object$reduced_data. Alternatively, the functions partition_score() and fitted() also return the reduced data.

partition_scores(object, ...)

# S3 method for class 'partition'
fitted(object, ...)

Arguments

object

a partition object

...

not currently used (for S3 consistency with fitted())

Value

a tibble containing the reduced data for the partition

Examples

set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition
prt <- partition(df, threshold = .6)


# three ways to retrieve reduced data
partition_scores(prt)
#> # A tibble: 100 × 9
#>    block1_x1 block1_x2 block1_x3 block2_x4 block3_x2 block3_x3 block3_x4
#>        <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
#>  1    -0.441    -0.327    0.503     -0.526     0.203  -0.907     -0.919 
#>  2    -0.180    -0.584    0.490     -1.71     -0.249  -1.39      -0.398 
#>  3     0.376     0.158   -0.0732     0.693    -0.554  -1.52       0.714 
#>  4     1.10      1.54     0.564     -0.524    -0.585  -0.00592    0.299 
#>  5    -1.66     -1.25    -1.44       0.189    -1.69   -1.43       0.140 
#>  6     1.60      2.42     0.192      0.463    -1.26   -0.346     -1.86  
#>  7     1.40      0.236   -0.354     -0.313    -0.223  -1.13       0.0716
#>  8     2.21      2.41     1.73      -0.521     1.72    2.19       1.04  
#>  9     0.404     0.311    0.672     -0.572    -1.10   -0.0893    -1.55  
#> 10     0.199     0.348    0.0455    -0.408    -0.192  -0.355      0.223 
#> # ℹ 90 more rows
#> # ℹ 2 more variables: reduced_var_1 <dbl>, reduced_var_2 <dbl>
fitted(prt)
#> # A tibble: 100 × 9
#>    block1_x1 block1_x2 block1_x3 block2_x4 block3_x2 block3_x3 block3_x4
#>        <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
#>  1    -0.441    -0.327    0.503     -0.526     0.203  -0.907     -0.919 
#>  2    -0.180    -0.584    0.490     -1.71     -0.249  -1.39      -0.398 
#>  3     0.376     0.158   -0.0732     0.693    -0.554  -1.52       0.714 
#>  4     1.10      1.54     0.564     -0.524    -0.585  -0.00592    0.299 
#>  5    -1.66     -1.25    -1.44       0.189    -1.69   -1.43       0.140 
#>  6     1.60      2.42     0.192      0.463    -1.26   -0.346     -1.86  
#>  7     1.40      0.236   -0.354     -0.313    -0.223  -1.13       0.0716
#>  8     2.21      2.41     1.73      -0.521     1.72    2.19       1.04  
#>  9     0.404     0.311    0.672     -0.572    -1.10   -0.0893    -1.55  
#> 10     0.199     0.348    0.0455    -0.408    -0.192  -0.355      0.223 
#> # ℹ 90 more rows
#> # ℹ 2 more variables: reduced_var_1 <dbl>, reduced_var_2 <dbl>
prt$reduced_data
#> # A tibble: 100 × 9
#>    block1_x1 block1_x2 block1_x3 block2_x4 block3_x2 block3_x3 block3_x4
#>        <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>     <dbl>
#>  1    -0.441    -0.327    0.503     -0.526     0.203  -0.907     -0.919 
#>  2    -0.180    -0.584    0.490     -1.71     -0.249  -1.39      -0.398 
#>  3     0.376     0.158   -0.0732     0.693    -0.554  -1.52       0.714 
#>  4     1.10      1.54     0.564     -0.524    -0.585  -0.00592    0.299 
#>  5    -1.66     -1.25    -1.44       0.189    -1.69   -1.43       0.140 
#>  6     1.60      2.42     0.192      0.463    -1.26   -0.346     -1.86  
#>  7     1.40      0.236   -0.354     -0.313    -0.223  -1.13       0.0716
#>  8     2.21      2.41     1.73      -0.521     1.72    2.19       1.04  
#>  9     0.404     0.311    0.672     -0.572    -1.10   -0.0893    -1.55  
#> 10     0.199     0.348    0.0455    -0.408    -0.192  -0.355      0.223 
#> # ℹ 90 more rows
#> # ℹ 2 more variables: reduced_var_1 <dbl>, reduced_var_2 <dbl>