map_partition()
fits partition()
across a range of minimum information
values, specified in the information
argument. The output is a tibble with
a row for each value of information
, a summary of the partition, and a
list-col
containing the partition
object.
a data set to partition
the partitioner to use. The default is part_icc()
.
arguments passed to partition()
a vector of minimum information to fit in partition()
a tibble
set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
map_partition(df, partitioner = part_pc1())
#> # A tibble: 5 × 5
#> target_info observed_info nclusters nreduced partition
#> <dbl> <dbl> <int> <int> <list>
#> 1 0.1 0.267 1 12 <partitin>
#> 2 0.2 0.267 1 12 <partitin>
#> 3 0.3 0.3 2 12 <partitin>
#> 4 0.4 0.434 3 12 <partitin>
#> 5 0.5 0.561 3 12 <partitin>