filter_reduced() and unnest_reduced() are convenience functions to quickly retrieve the mappings for only the reduced variables. filter_reduced() returns a nested tibble while unnest_reduced() unnests it.

filter_reduced(.partition)

unnest_reduced(.partition)

Arguments

.partition

a partition object

Value

a tibble with mapping key

Examples

set.seed(123)
df <- simulate_block_data(c(3, 4, 5), lower_corr = .4, upper_corr = .6, n = 100)
# fit partition
prt <- partition(df, threshold = .6)


# A tibble: 3 x 4
filter_reduced(prt)
#> # A tibble: 2 × 4
#>   variable      mapping   information indices  
#>   <chr>         <list>          <dbl> <list>   
#> 1 reduced_var_1 <chr [2]>       0.656 <int [2]>
#> 2 reduced_var_2 <chr [3]>       0.627 <int [3]>

# A tibble: 9 x 4
unnest_reduced(prt)
#> # A tibble: 5 × 4
#>   variable      mapping   information indices
#>   <chr>         <chr>           <dbl>   <int>
#> 1 reduced_var_1 block3_x1       0.656       8
#> 2 reduced_var_1 block3_x5       0.656      12
#> 3 reduced_var_2 block2_x1       0.627       4
#> 4 reduced_var_2 block2_x2       0.627       5
#> 5 reduced_var_2 block2_x3       0.627       6