as_partition_step() creates a partition_step object. partition_steps are used while iterating through the partition algorithm: it stores necessary information about how to proceed in the partitioning, such as the information threshold. as_partition_step() is primarily called internally by partition() but can be helpful while developing partitioners.

as_partition_step(
  .x,
  threshold = NA,
  reduced_data = NA,
  target = NA,
  metric = NA,
  tolerance = 0.01,
  var_prefix = NA,
  partitioner = NA,
  ...
)

Arguments

.x

a data.frame or partition_step object

threshold

The minimum information loss allowable

reduced_data

A data set with reduced variables

target

A character or integer vector: the variables to reduce

metric

A measure of information

tolerance

A tolerance around the threshold to accept a reduction

var_prefix

Variable name for reduced variables

partitioner

A partitioner, a part_*() function or one created with as_partitioner().

...

Other objects to store during the partition step

Value

a partition_step object

Examples

.df <- data.frame(x = rnorm(100), y = rnorm(100))
as_partition_step(.df, threshold = .6)
#> $.df
#>                x           y
#> 1   -1.400043517 -0.38721358
#> 2    0.255317055 -0.78543266
#> 3   -2.437263611 -1.05673687
#> 4   -0.005571287 -0.79554143
#> 5    0.621552721 -1.75627543
#> 6    1.148411606 -0.69053790
#> 7   -1.821817661 -0.55854199
#> 8   -0.247325302 -0.53666333
#> 9   -0.244199607  0.22712713
#> 10  -0.282705449  0.97845492
#> 11  -0.553699384 -0.20888265
#> 12   0.628982042 -1.39941046
#> 13   2.065024895  0.25853729
#> 14  -1.630989402 -0.44179945
#> 15   0.512426950  0.56859986
#> 16  -1.863011492  2.12685046
#> 17  -0.522012515  0.42485844
#> 18  -0.052601910 -1.68428153
#> 19   0.542996343  0.24940178
#> 20  -0.914074827  1.07283825
#> 21   0.468154420  2.03936926
#> 22   0.362951256  0.44945378
#> 23  -1.304543545  1.39181405
#> 24   0.737776321  0.42656655
#> 25   1.888504929  0.10758399
#> 26  -0.097445104  0.02229473
#> 27  -0.935847354  0.60361101
#> 28  -0.015950311 -0.26265057
#> 29  -0.826788954 -0.52826408
#> 30  -1.512399651  0.19214942
#> 31   0.935363190 -1.14619967
#> 32   0.176488611  0.84618466
#> 33   0.243685465  0.08171963
#> 34   1.623548883 -1.30511701
#> 35   0.112038083 -0.94491206
#> 36  -0.133997013  0.45434159
#> 37  -1.910087468 -0.85520250
#> 38  -0.279237242 -0.28689522
#> 39  -0.313445978  0.89496163
#> 40   1.067307879  0.06730444
#> 41   0.070034850 -0.16267634
#> 42  -0.639123324 -0.82731017
#> 43  -0.049964899  1.87650562
#> 44  -0.251483443  0.76644020
#> 45   0.444797116  0.97995670
#> 46   2.755417575  1.32178099
#> 47   0.046531380 -1.11971083
#> 48   0.577709069  0.51459982
#> 49   0.118194874 -1.50909984
#> 50  -1.911720491  1.53274148
#> 51   0.862086482  0.42914737
#> 52  -0.243236740  0.12210341
#> 53  -0.206087195 -1.13801240
#> 54   0.019177592 -0.55801513
#> 55   0.029560754  1.05253854
#> 56   0.549827542  0.67768364
#> 57  -2.274114857  0.03849955
#> 58   2.682557184 -0.35638119
#> 59  -0.361221255  0.78284410
#> 60   0.213355750  0.80441162
#> 61   1.074345882 -1.90006082
#> 62  -0.665088249  0.93578429
#> 63   1.113952419 -0.30905150
#> 64  -0.245896412  0.26306668
#> 65  -1.177563309 -1.79059186
#> 66  -0.975850616 -0.78825884
#> 67   1.065057320 -1.13302167
#> 68   0.131670635  0.36365257
#> 69   0.488628809 -0.28588791
#> 70  -1.699450568  0.51766913
#> 71  -1.470736306 -0.10290867
#> 72   0.284150344 -0.97406959
#> 73   1.337320413  1.27067230
#> 74   0.236696283  0.96086479
#> 75   1.318293384  0.76872137
#> 76   0.523909788  1.03593077
#> 77   0.606748047 -0.47388707
#> 78  -0.109935672 -1.27533487
#> 79   0.172181715 -0.30562067
#> 80  -0.090327287  2.21176949
#> 81   1.924343341 -1.04166838
#> 82   1.298392759 -1.14652385
#> 83   0.748791268 -1.67532730
#> 84   0.556224329  1.52593866
#> 85  -0.548257264  0.55418551
#> 86   1.110534893  1.99311026
#> 87  -2.612334333 -0.15412074
#> 88  -0.155693776  2.56440834
#> 89   0.433889790  1.06199914
#> 90  -0.381951112  1.14269488
#> 91   0.424187575  1.12383884
#> 92   1.063101996 -0.39700149
#> 93   1.048712620 -0.82326115
#> 94  -0.038102895 -0.57888462
#> 95   0.486148920  1.76378938
#> 96   1.672882611  0.13299215
#> 97  -0.354361164  0.37649933
#> 98   0.946347886  1.13870765
#> 99   1.316826356  1.24126308
#> 100 -0.296640025  0.61209094
#> 
#> $threshold
#> [1] 0.6
#> 
#> $target
#> [1] NA
#> 
#> $last_target
#> [1] NA
#> 
#> $reduced_data
#> # A tibble: 100 × 2
#>           x      y
#>       <dbl>  <dbl>
#>  1 -1.40    -0.387
#>  2  0.255   -0.785
#>  3 -2.44    -1.06 
#>  4 -0.00557 -0.796
#>  5  0.622   -1.76 
#>  6  1.15    -0.691
#>  7 -1.82    -0.559
#>  8 -0.247   -0.537
#>  9 -0.244    0.227
#> 10 -0.283    0.978
#> # ℹ 90 more rows
#> 
#> $metric
#> [1] NA
#> 
#> $tolerance
#> [1] 0.01
#> 
#> $mapping_key
#> # A tibble: 2 × 3
#>   variable mapping   information
#>   <chr>    <list>          <dbl>
#> 1 x        <chr [1]>           1
#> 2 y        <chr [1]>           1
#> 
#> $var_prefix
#> [1] NA
#> 
#> $all_done
#> [1] FALSE
#> 
#> $partitioner
#> [1] NA
#> 
#> attr(,"class")
#> [1] "partition_step"