This function deprecates. Please use est_lucid instead.
Usage
est.lucid(
G,
Z,
Y,
CoG = NULL,
CoY = NULL,
K = 2,
family = c("normal", "binary"),
useY = TRUE,
tol = 0.001,
max_itr = 1000,
max_tot.itr = 10000,
Rho_G = 0,
Rho_Z_Mu = 0,
Rho_Z_Cov = 0,
modelName = "VVV",
seed = 123,
init_impute = c("mclust", "lod"),
init_par = c("mclust", "random"),
verbose = FALSE
)
Arguments
- G
Exposures, a numeric vector, matrix, or data frame. Categorical variable should be transformed into dummy variables. If a matrix or data frame, rows represent observations and columns correspond to variables.
- Z
Omics data, a numeric matrix or data frame. Rows correspond to observations and columns correspond to variables.
- Y
Outcome, a numeric vector. Categorical variable is not allowed. Binary outcome should be coded as 0 and 1.
- CoG
Optional, covariates to be adjusted for estimating the latent cluster. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables.
- CoY
Optional, covariates to be adjusted for estimating the association between latent cluster and the outcome. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables.
- K
Number of latent clusters. An integer greater or equal to 2. User can use
lucid
to determine the optimal number of latent clusters.- family
Distribution of outcome. For continuous outcome, use "normal"; for binary outcome, use "binary". Default is "normal".
- useY
Flag to include information of outcome when estimating the latent cluster. Default is TRUE.
- tol
Tolerance for convergence of EM algorithm. Default is 1e-3.
- max_itr
Max number of iterations for EM algorithm.
- max_tot.itr
Max number of total iterations for
est_lucid
function.est_lucid
may conduct EM algorithm for multiple times if the algorithm fails to converge.- Rho_G
A scalar. This parameter is the LASSO penalty to regularize exposures. If user wants to tune the penalty, use the wrapper function
lucid
- Rho_Z_Mu
A scalar. This parameter is the LASSO penalty to regularize cluster-specific means for omics data (Z). If user wants to tune the penalty, use the wrapper function
lucid
- Rho_Z_Cov
A scalar. This parameter is the graphical LASSO penalty to estimate sparse cluster-specific variance-covariance matrices for omics data (Z). If user wants to tune the penalty, use the wrapper function
lucid
- modelName
The variance-covariance structure for omics data. See
mclust::mclustModelNames
for details.- seed
An integer to initialize the EM algorithm or imputing missing values. Default is 123.
- init_impute
Method to initialize the imputation of missing values in LUCID. "mclust" will use
mclust:imputeData
to implement EM Algorithm for Unrestricted General Location Model to impute the missing values in omics data;lod
will initialize the imputation via relacing missing values by LOD / sqrt(2). LOD is determined by the minimum of each variable in omics data.- init_par
Method to initialize the EM algorithm. "mclust" will use mclust model to initialize parameters; "random" initialize parameters from uniform distribution.
- verbose
A flag indicates whether detailed information for each iteration of EM algorithm is printed in console. Default is FALSE.