Skip to contents

This function deprecates. Please use est_lucid instead.

Usage

est.lucid(
  G,
  Z,
  Y,
  CoG = NULL,
  CoY = NULL,
  K = 2,
  family = c("normal", "binary"),
  useY = TRUE,
  tol = 0.001,
  max_itr = 1000,
  max_tot.itr = 10000,
  Rho_G = 0,
  Rho_Z_Mu = 0,
  Rho_Z_Cov = 0,
  modelName = "VVV",
  seed = 123,
  init_impute = c("mclust", "lod"),
  init_par = c("mclust", "random"),
  verbose = FALSE
)

Arguments

G

Exposures, a numeric vector, matrix, or data frame. Categorical variable should be transformed into dummy variables. If a matrix or data frame, rows represent observations and columns correspond to variables.

Z

Omics data, a numeric matrix or data frame. Rows correspond to observations and columns correspond to variables.

Y

Outcome, a numeric vector. Categorical variable is not allowed. Binary outcome should be coded as 0 and 1.

CoG

Optional, covariates to be adjusted for estimating the latent cluster. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables.

CoY

Optional, covariates to be adjusted for estimating the association between latent cluster and the outcome. A numeric vector, matrix or data frame. Categorical variable should be transformed into dummy variables.

K

Number of latent clusters. An integer greater or equal to 2. User can use lucid to determine the optimal number of latent clusters.

family

Distribution of outcome. For continuous outcome, use "normal"; for binary outcome, use "binary". Default is "normal".

useY

Flag to include information of outcome when estimating the latent cluster. Default is TRUE.

tol

Tolerance for convergence of EM algorithm. Default is 1e-3.

max_itr

Max number of iterations for EM algorithm.

max_tot.itr

Max number of total iterations for est_lucid function. est_lucid may conduct EM algorithm for multiple times if the algorithm fails to converge.

Rho_G

A scalar. This parameter is the LASSO penalty to regularize exposures. If user wants to tune the penalty, use the wrapper function lucid

Rho_Z_Mu

A scalar. This parameter is the LASSO penalty to regularize cluster-specific means for omics data (Z). If user wants to tune the penalty, use the wrapper function lucid

Rho_Z_Cov

A scalar. This parameter is the graphical LASSO penalty to estimate sparse cluster-specific variance-covariance matrices for omics data (Z). If user wants to tune the penalty, use the wrapper function lucid

modelName

The variance-covariance structure for omics data. See mclust::mclustModelNames for details.

seed

An integer to initialize the EM algorithm or imputing missing values. Default is 123.

init_impute

Method to initialize the imputation of missing values in LUCID. "mclust" will use mclust:imputeData to implement EM Algorithm for Unrestricted General Location Model to impute the missing values in omics data; lod will initialize the imputation via relacing missing values by LOD / sqrt(2). LOD is determined by the minimum of each variable in omics data.

init_par

Method to initialize the EM algorithm. "mclust" will use mclust model to initialize parameters; "random" initialize parameters from uniform distribution.

verbose

A flag indicates whether detailed information for each iteration of EM algorithm is printed in console. Default is FALSE.